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ABSTRACT 

A homomorphie map is defined from the algebra of norm bounded analytic 
N-operator valued functions in the unit disc into the algebra of bounded 
operators in Hilbert spaces represented as left invariant subspaces of H2(N), 
and the spectral properties of the map arc studied. 
The subclass of functions having norm bound one in the disc is characterized 
in terms of the power series coefficients. 

1. Introduction. The object of  this paper is the construction of  a functional 
calculus for a class of  contraction operators in Hilbert space in which the functions 
involved are elements of  certain algebras of  bounded operator valued analytic 
functions in the unit disc. This generalizes a calculus constructed by Sz.-Nagy 

and Foias [11] in which the function algebra used was H% The class of  operators 
for which this construction is possible is the set of  all contractions T in a separable 
Hilbert space H for which T *n converges to zero in the strong operator topology. 
By a theorem of  Rota [9, 2,12] we can represent T* as the restriction of the left 
shift operator to a left invariant subspace of  a direct sum, finite or infinite, of  H 2 
spaces. Therefore we will assume the operators to have been so represented. In §2 
we introduce the functional calculus and study its spectral properties. As in [-4] 
the tools are the Beurling-Lax representation of right invariant subspaces and a 
matrix version of the corona theorem obtained by the author in [4]. In §3 we use 

the functional calculus to generalize a theorem of  I. Schur 1-10] characterizing 
analytic operator valued functions of  norm bound one in the unit disc in terms 
of  the coefficients of  their power series expansion. Before proceeding we will 
introduce some notation. 

Let N be a separable Hilbert space. H2(N) is the Hardy class of  order 2, i.e. 
the set of  all N-valued square integrable functions on the unit circle whose 
Fourier coefficients vanish for all negative indices. (For  details we refer to [6].) 
The H2(N) norm is defined by 

= [ I F ( e ' t ) [ I Z d t  . 
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All functions in H2(N) have analytic continuations into the disc, and whenever 
convenient we will assume that the functions have been continued. 

As usual a subspace of H2(N) is called (right) invariant if it is invariant under 
multiplication by z. The operator U of multiplication by z in H2(N) is called the 
right shift, i.e. 

(UF) (z) = zF(z). 

The adjoint of U, U*, is called the left shift and we have 

(U*F)(z) = [F(z) - F(0)]/z. 

A subspac~ of H2(N) is called left invariant if it is invariant under the left shift. 
The orthogonal complement of a left invariant subspace is right invariant. 

Now let K be a left invariant subspace of H2(N) and P the orthogonal projection 
of H2(N) onto K. If we embed H2(N) naturally in L2(N), then we consider P to be 
the orthogonal projection of L2(N) onto K. Let us define the operator T in K by 

(1.1) TF = P(UF) 

for each F in K. Clearly T* = U* I K. The operator T will be the basis of our 
calculus. 

By the Beurling-Lax Theorem [1,7,5] the orthogonal complement of K in 
H2(N), K ~, is of the form K" = SH2(N) where S is a rigid function i.e. an 
N-contraction valued analytic function in the unit disc having a.e. partial iso- 
metries with a fixed initial space as boundary values on the unit circle. A rigid 
function is called inner if its boundary values are a.e. unitary operators. 

2. Slk-'etral analysis. By OH~°(N), (the O stands for operator), we denote the 
Banach algebra of all bounded N-operator valued analytic functions in the open 
unit disc D, the norm being given by 

(2.1) II A Iloo = sup {tl A(z)]llz e D}. 

Here [I A(z)II is the norm of A(z) as an operator in N. The algebra OH°°(N) 
has a natural involution defined by A ~ A, X being defined by 

(2.2) .~(z) = A(f)*. 

Clearly this involution satisfies besides the standard properties of an involution also 

(2.3) ]l Xll-= II AII-. 

If we define for each F in H2(N) and A in OH~°(N) 

(2.4) (A(U)F) (z) = A(z)F(z) 

then the map A -.* A(U) is a norm preserving algebra homomorphism of OH°°(N) 
into the algebra of all bounded operators in H2(N). Of course the identity function 
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z is mapped into the right shift U and this motivated our notation. Since for 
any A in OHm(N) we have zA(z)= A(z)z, it follows that UA(U)= A(U)U or 
that the multiplication operators A(U) all commute with U. The converse is 
also true and is given by the following simple generalization of  the classical scalar 
theorem. In an equivalent form it is given in I-8]. 

THEOREM 2.1. Every bounded operator 9.I in H2(N) that commutes with 
the right shift U can be represented in the form A(U), with A in OH°°(N) and 
moreover 

II 9A II = II A II oo. 

The map A ~ A(U) of OH°°(N) into the algebra of  all bounded operators in 
H2(N) can be greatly generalized. Instead of H2(N) we consider a left invariant 
subspace K of H2(N). By OH°~(N) we denote the subalgebra of  all OH°°(N) 
functions that leave K "  invariant. Since K -L is a right invariant subspace we have 
H°°c OHm(N), where H °° is considered as naturally embedded in OH°°(N). 
The next definition introduces the functional calculus. 

DEFINITION 2.1. Let A be in OHm(N). For each F in K we define 

(2.5) A(T)F = P(AF), 

Obviously this generalizes the Sz.-Nagy-Foias calculus as applied to the operator 
T. The next theorem summarizes the elementary properties of  this calculus. 

THEOREM 2.2. A,BeOH~(N),  ~,f leC then 
a. (~A + fiB)(T) = ~A(T) + fiB(T) 
b. (AB)(T) = A(T)B(T) 

c. II A<T)II =< II A II + 
d. A,,A~OH~(N). Let {A,} be uniformly bounded in D and such that a.e. 

on the unit circle lim A,(e")= A(g t) in the strong operator topology of N; then 
A,(T) converges to A(T) in the strong operator topology in K. 

Proof. 

a. Obvious 
b. Here we use the fact that multiplication by A leaves K invariant. It should 

be noted that b. holds even if B is only in OI-I°°(N). 
c. For each F in K, 

1 fo2" lfo2  I[A(T)FII2 <= [IA(e")F(e")[12dt <= IlAllLflr(e")ll2dt 

= Ilall flrll 2 
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The first inequality follows from the fact that a projection is not norm increasing. 
d. Let F be in k, 

1 fo 2~ It (A"(T)- A(T))F --< 2= [l(a"(e")-  A(eit))F(ef')llZdt 

and we use the Lebesgue convergence theorem. 
While the calculus is well defined for all left invariant subspaces of H2(N) we 

will restrict ourselves as of now to those subspaces for which the Beurling Lax 
representation of their orthogonal complement can be given by an inner function. 
Thus we assume K = H2(N)@ SH2(N) where S is inner. 

LEMMA 2.1. For A in OH°~(N), A(T) = 0 i f  and only i f  there exists a C in 
OH°°(N) satisfying 

(2.6) A = SC. 

Proof. If there exists a C in OH°°(N) for which (2.6) holds, then for each 
F ~ K,  AF  = SCF is in K "L . Thus A(T) f=O.  

Conversely suppose A ( T ) =  0. Since A ~ OHm(N), this means that the range 
of A as a multiplication operator in H2(N) is included in SH2(N). Thus for each 
F in H2(N) the operator C defined by 

(2.7) ( C F) ( e i') = S( eU)* A( eit)F( e ~') 

is a bounded operator in H2(N) that clearly commutes with the right shift. By 
Theorem 2.1, C is in OH°°(N) and (2.6) is proved. 

THEOREM 2.3. Let K = H2(N) e SHZ(N) with S inner. A e OH°~(N) i f  and 
only i f  A ~ OH°°(N) and there exists an A 1 in OH°°(N) satisfying 

(2.8) a(z)S(z) = S(z)Al(z) 

for all z in D. I f  such an A I exists then it is unique. 

Proof. If (2.8) is satisfied, then clearly A leaves SH2(N) invariant as for each 
F e H2(N) 

A(SF) = S(A1F) ~ SHZ(N). 

Conversely assume A ~ OH°~(PO. For each F ~ HZ(N), ASF e SH2(N) thus 
S*ASF~H2(N) .  It follows that the operator A t in HZ(N) defined by 

(2.9) ( A1F) ( e ~') = S( e")* a(  ei')S( e~')F( e u) 

is a bounded operator commuting with the right shift. Hence by Theorem 4.2, 

A 1 e OH°°(N), and 

(2.10) ( A I F) ( e ~') = A l ( e~t)F( ef'). 



(2.13) 

THEOREM 2.5. 
to A(T)*. 

Proof. 
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But (2.9) and (2.10) imply (2.8) and the theorem is proved. The uniqueness follows 
from Lemma 2.1. 

The next two theorems are concerned with the representations of A(T)* as a 
multiplication operator. This is possible if the rigid function corresponding to K is 
inner. Thus again we assume that K = H2(N)e  SH2(N) where S is inner. 
Obviously ~ defined by (2.2) is inner too. Let us define a left invariant subspace 
R of H2(N) by 

(2.11) g = H2(N) e gH2(N). 

Let A • OHm(N). By Theorem 2.3 there exists a unique A1 such that (2.8) is 
satisfied. 

THEOREM 2.4. Let A,  be given by (2.8), then X 1 as defined by (2.2) is in 
OHio(N). 

Proof. By Theorem 2.3, )]'1 is in OHm(N) if and only if there exists a B in 
OH°°(N) for which 

(2.12) /~1(z)$(z) = ~(z)l~(z). 

But for B = A this is clearly equivalent to (2.8). 
Thus Xl leaves g ±  invariant. Let us denote by ~ the operator in R of mul- 

tiplication by z followed by projection into R. Let P, agbe the orthogonal projections 
of H2(N) (or L2(N)) onto K, g respectively. For A • OH~(N) we denote by 
A(T) the operator given by 

A( :~)F = ff(aF). 

Let A 1 be given by (2.8); then 2Tl(:r ) is unitarily equivalent 

We have the following direct sum decompositions, 

L2(N) = K2(N) ~ K if) SH2(N) = K2(N) ~ g ~  ~H2(N). 

We define the map z in L2(N) by 

(2.14) (,F) (e") = e -"S(e -")*F(e -"). 

• is a unitary map of L2(N), mapping SH2(N) onto K2(N), K2(N) onto ~H=(N) 
and K onto g. Now for F • K 

(zAF)(e") = e-"S(e-")*A(e-")F(e-") 

= e-",f(e")X(e")*F(e-"). 

z being unitary, we have for all F, G in K 
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(zAF, zG) = (AF, G) 

1 e-U~(eU).4(d')*F(e - u), e- "~(d')G(d')) dt 
2n 

lff = 2x (F(e-i')"2[(eU)G(e-U))dt 

1 fo2~(e_,~(e,,)F(e_t,),e_U~(e .).~(d,)G(e_,,))dt 
2n 

= 2~ e-"~(eU)F(e-U)'e-itj~l(eU)~{(ef')G(e-i'))dt 

= (zF, XlzG). 

Taken together with the relation 

(2.15) 

this gives 

xP = P~ 

(TPAF, xG) = ( PTAF, zG) = (zF, PXl zG ) 

or A(T)* is unitarily equivalent to ,'TI(T). 
If  we consider the special case o f  the function A(z )  = z I  then under the same 

assumptions we get the unitary equivalence of T and T*. This is Theorem 2.1 
in [4]. 

DEFINITION 2.2. Let A be in OH°°(N). An inner function R in OH°°(N) is 
called a left inner factor of A if there exists a B in OHm(N) such that A = RB. 
R is a right inner factor o f A  i f R  is a left inner factor of X. 

LEMMA 2.2. Let K = H 2 ( N ) ~ S H 2 ( N ) ,  S inner, AeOHK(N ). A and S 
have no non-trivial common left inner factor if  and only if the manifold 

A(T)K = {PAF] F ~ K} 

is dense in K. 

Proof. If  A and S have a non-trivial common left inner factor then there 
exists a non-null F in K such that F is orthogonal to AH2(N). Hence F is 
orthogonal to PAH2(N) i.e. to A(T)K. 

Conversely if A and S have no non-trivial common left inner factor then 
AH2(N) + SH2(N) spans H2(N). Therefore for each F in K for which (F, A(T)G) 
= 0 is true for all G in K, the more general orthogonality condition (F,H) = 0 
for all H e H2(N) is also satisfied. Hence F = 0. It follows that A(T)K is dense in K. 

TrmOREM 2.6. 0e,p(A(T)*) if and only if  A ,S  have a non-trivial common 
left inner factor. 
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ProoL By Lemma 2.2 A and S have a non-trivial common left inner factor if 
and only if A(T)K is not dense in K which is equivalent to 0 e ap(A(T)*). 

Again let A e OH°~(N). By Theorem 2.4 there exists an A 1 e OHm(N) for which 
(2.8) holds. 

THEOREM 2.7. Oe ap(A(T)) if and only if S and A 1 have a non-trivial right 
inner factor. 

Proof. By Theorem 2.5 A(T) is unitarily equivalent to AI(T)*. Applying 
Theorem 2.6 to Xl( T)* we have 0 ~ ap(Xl(T)*) if and only if X 1 and ~ have a 
non-trivial common left inner factor i.e. if and only if A 1 and S have a non-trivial 
common right inner factor. But 0 e ~p(A(T)) if and only if 0 ~ ap(,41(T)*) and this 
completes the proof. 

In order to get results about the invertibility of the operators A(T) we will 
have to assume the auxiliary Hilbert space N to be finite dimensional. In that 
case we have available to us a matrix generalization of  the Carleson Corona 
Theorem [4] which we proceed to quote. 

THEOREM 2.8. Let N be an n dimensional Hilbert space, At, i = 1,...,p in 
OH°°(N). 

a. A necessary and sufficient condition for the existence of B i in OH~°(N) 
such that ~, ~=lBi(z)Ai(z) = I is the existence of a 6 > 0 for which 

(2.16) in f{  = ~llA'(z)xll~ t I x i n N ' [ l x [ [ = l }  >=~ 

for all z in D. 
b. A necessary and sufficient condition for the existence of Bi in OH°°(N) 

such that ~ i=lAi(z)Bi(z)=I  is the existence of a 6 > O f  or which 

(2.17) 

for all z in O. 

THEOREM 2.9. Let K = H 2 ( N ) e  SH2(N) where S in an inner function and 
N a finite dimensional Hilbert space. A(T) as defined by (2.5) has a bounded 
inverse if and only if there exists a 6 > 0 for which 

(2.18) 

and 

(2.19) 

inf {11A(z)*x 11 + ]1S(z)*x Ill x in N, 

inf {[[ Ax(z)x [[ + [] S(z)x [[[ x in N, 

for all z in D, AI as defined by (2.8). 

I1 xl] = 1} 

IIxU = 1} > 
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Proof. We will show first that under the assumption that no ~ > 0 exists for 
which (2.19) holds, there exists a sequence of functions F,  in K for wgich 

lim ~ F, I[ = 1 and lim [l A(T)F, II = O, 
which implies that A(T) has no bounded inverse. 

By our assumption there is a sequence {1,) of points in D and unit vectors x, 
in N for which 

lim [I Al(i,,)x, II = lim I] S(~,)x,, ]1 = O. 
If  S(2)x = Al(1)x = 0 then S and AI have a common right inner factor and by 

Theorem 2.7, 0 ~ crp(A(T)). In fact in this case we can easily exhibit a null function 

of A(T). By Theorem 2.2 in [4], S(2)x = 0 implies that F(z) S(z)x is in K and 
~ Z m  I 

is moreover an eigenfunction of T corresponding to the eigenvalue i.  Now 

A(z)F(z) = A(z) S(z)x = S(z)A~(z)x 
z-2 z-2 

AI(Z)X AI(Z)X 
But since A~(I)x = 0, z -  1 is in H2(N), and S(z) - Z Z ~  is in SH2(N). It 

follows that AF is in SH2(N) and thus A(T)F = 0. In general we have no eigenfunc- 
tions but approximate ones. 

(1 - [ i . 1 2 )  ~ S(z)x. 
z - ~  

= (1 - [ 1 .  [~)~ s( i . )x .+ ( 1 -  I t.12) ~(s(z) - s ( t . ) )x .  
z - I. z - I. 

S(z) x. 
Since the function z---L-~/" is orthogonal to SH2(N) its projection into H2(N) 

is also orthogonal to SH2(N). Let 

F.(z) = (I - [l. [2),/2 (S(z) - S(l.))x. 
Z -- I n 

and 
S( t.)x. 

G,(z) = (1 - [ t.]2: z--T." 

Clearly G. is conjugate analytic and F. analytic, thus F. is in K. Moreover we have 
lira ]]G.I ] =l i r a  [I S( ;t.)x. I] =0 and thus lira [[F.]] = 1. Now 

A(z)F.(z) = A(z)(1 - I i s ( z )  _ s ( t . ) ) x .  
7,  ~ 21, n 

Al(z)x. S(A)x. 
= S(z)(l -I~I~: a(z)O-Ii.l : 

= S(z)(1 - [~.[2)~" (A~(z) - A~(~)x.  
Z ~ Ill 

+ S(z ) (1 -  1~[5 '  A,(a.)~. a ( z ) ( 1 - 1 ~ . [ 5 '  s(;~)x. ~-Y. zXT. 
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The first term on the right is in SH2(N) and thus its projection into K is zero. 
The following estimate follows. 

IIA(T)F"I1 < I1PAF" I] 

{ fo "} _< (1_]~.]2)~ 1 2, S(eU)At(2,)x,i i dt ÷ 
- -  eit - '~'n 

1 2n ~ {  

+ { fo rl I 

= I[ A,(~.)x. II + II a I[~[I s(~.)x. [l" 
Hence lim A( T)F, = O. 

Next we consider the necessity of (2.18). If A(T) has a bounded inverse so has 
A(T)* which by Theorem 2.5 is unitary equivalent to -4t(2r). Applying the former 
considerations to ~ I ( T ) a n d  remembering that X I ~ =  SX we get (2.18). 

To prove sufficiency let us assume there exists a 6 > 0 for which (2.18) and 
(2.19) hold. Theorem 2.8 and (2.18) imply the existence of C, Dz OHm(N) for 
which CA+ D S =  1, or equivalently AC+ SO = 1. By taking projections onto K 
and using the fact that S(T)D(T)= 0, we get 

(2.20) A(T)~(T) = 1. 

(In this connection, see the proof of Theorem 2.2b). 
By the same token from (2.19) follows the existence of C1,Dx z OHW(N) 

for which 

C1A 1 +DIS = 1 or A't~I + gL~l = 1. 

By taking the projection onto K we get 

(2.21) XI(~r)Cx(T) = 1. 

Equation (2.20) says that A(T) has a bounded right inverse. Equation (2.21) 
says that ~ I ( T ) ,  and thus by Theorem 2.5 also A(T)*, has a bounded right 
inverse. By taking adjoints this is equivalent to A(T) having a bounded left in- 
verse. Thus A(T) has bounded right and left inverses and is thus boundedly 
invertible. 

REMARK. In the proof of the necessity of conditions (2.18) and (2.19) the 
finite dimensionality of N has not been used and thus that part of the theorem 
holds in the general case. 

COROLLARY 2.1. Let u be in/-/°°; u(T) has a bounded inverse if and only if 
there exists a ~ > 0 for which 

I u(z) l + II s(~)- '  [1 -~ = 
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for all z in D. iI s(z)-lll-, has to be interpreted as zero wherever S(z) is not 
invertible. 

Proof. Since u(z)S(z)=S(z)u(z) we have ul(z)=u(z).  Condition (2.18) 
reduces, since u is a scalar function, to 

lu(z) l + inf IlS(z)*xl] > 5. 
l lx l [  = 1 

But if S(z)* is invertible infll S ( z ) , x l l  = II s(z),-, I1-1= s(z)-, I1 Otherwise 
N being finite dimensional there is a null vector and inf[[ S(z)*x I =0. Condition 
(2.19) reduces similarly. Thus we get Theorem 2.3 in [4] as a special case. 

3. Analytie operator valued functions of bound one in the unit disc. This section 
is devoted to a generalization of  a theorem of I. Schur [10] characterizing analytic 
functions of bound one in the unit disc in terms of their power series coefficients. 
Our approach via Hilbert space operator theoretic methods is very simple and is 
close in spirit to Schur's own proof though it differs considerably in language, 
Schur's papers preceding of course the abstract formulation of Hilbert space. 

Let N be a separable Hilbert space. We denote by S N (S for Schur) the class 
of  all N-contraction valued analytic functions in the unit disc D; i.e. A is in SN 
if A is in OH°°(N) and II a I1 - 1. 

Let K,=H2(N)@z"+IH2(N) and T, multiplication by z in K, followed by 
projection into K,. Since z" are scalar inner functions we have OH~,(N) = OH°°(N). 
A(Tn) is defined by (2.5) 

THEOREM (3.1). Let A(z) = ~,V'°°=oA,z" be an N-operator valued analytic 
function. A ~ SN if and only if  the quadratic form 

min(i,j) 

(3.1) PU= 5U-  ~' * 
v = O  

is non-negative definite. 

Proof. Assume A e SN; 
T, "+l = 0 and 

it follows that for each n, ]]A(T,,)[ 1 __< 1. Now 

(3.2) A(T,) = Ao + A1T, + ." + A,T~. 

It should be noted that in this case T, and Ai are commuting operators resulting 
from the fact that the z" are scalar. In general we cannot expect relation (3.2). 
Taking adjoints and using the commutativity noted above we have 

Now 
A(T.)* * * * A'T*".  = Ao + A1TI, + ...+ 

K.  = (F(z) = Xo + . . .  + x.z"J x, ~ N). 

(A(T.)*F)(z) = A'~(Xo + ' "  + x.z") +. . .  + A*~x. 

= (A~xo + . . .  + A*.x.) + . . .  + A~x.z". 
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Since IIA(T.)* II = HA(T.)[] < X, we have for each F+K., [[A(TD*FI[ 2 <= IIFII = 
Expressed in terms of the K ,  norm we have for all xi ~ N 

(3.3) [[a~xo + "'" + A*xn[[ 2 + "" + [[a~xn[[ 2 

=< I] xo 112 + . .  + II x. ll2. 

Equivalently ~,"i.j=o(Pijxi, xj)> 0 for all x i e N ,  where Pij is as in (3.1). Since n 
is arbitrary, the non-negative definiteness of the form (3.1) is proved. 

Conversely we assume now that the form (3.1) is non-negative definite. In K.  
we define an operator ~ .  by 

9~*(Xo + "" + x,z") = a~(xo+ ... + x,z") + A*(xx+ ... + x,z "-a) + ... + A*x,. 

By (3.3) 9.[, is a contraction and it obviously commutes with T*. For n > m 
9~m = ~n [Km. On the linear manifold U , ~ o K , ,  which is dense in H2(N)we define 
2[* by 

9I*F = 9~*F for F e K,. 

9.I* is well defined and commutes with the left shift in H2(N). It extends by con- 
tinuity to an everywhere defined contraction commuting with the left shift. This 
new operator we still denote by 9~*. Taking adjoints, 2[ = 9~**, is a contraction 
commuting with multiplication by z in H2(N). By Theorem 2.1 9~ can be repre- 
sented as (92F)(z)=A(z)F(z) with A~SN. Since A(T,)= 9.In we must have 
A(z) = ~,=o~° A,z" , which proves the theorem. 

COROLLARY 3.1 Let A(z) = ]~,~=oA,z" be an N operator valued analytic 
function. A e SN if and only if  the quadratic form 

min(i , j )  
Q~j ~ j  ~ * = -- A j _ v A i _  v 

v=O 

is non-negative definite. 

Proof. A~SN if and only if . 4eSn  where ~(z) = A(~) * -x'°°- ~.=o,..za* ". For 
X we apply Theorem 3.1. 
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